安全管理网

火车车轮锻造工艺分析

  
评论: 更新日期:2015年07月10日

踏面余量的确定。在确定轮坯踏面余量时,轮坯的椭圆度和热处理过程中直径0.1—0.2%的变化量应该予以充分考虑。但是,主要还是要注意踏面上表面氧化皮压入、裂纹以及结疤等的消除。经过实践中的反复摸索,笔者认为,踏面锻造余量的确定取8mm较为合适。
    轮毂外径余量确定。轮毂外径余量的确定,主要取决于设备对轮毂、轮辋偏心的精度控制。目前,山西某重型机械集团公司在这一精度控制上可以达到6mm以内。为了确保最大偏心后,轮毂能有3mm的加工余量,初期生产中,应该把轮毂余量确定为9mm。实践证明,在设备正常情况下的批量生产中,轮毂外径余量取7mm比较适宜。
    轮毂、轮辋端面的余量确定。这两项余量的确定主要取决于端面氧化皮压入、端面的不平整状况以及预成形时轮毂端面尖角部位填充不完全所造成的轮毂端部圆角三个因素。在模具首次设计中,这一余量一般取7mm和6mm。为了降低成本,曾经试图降低这两种余量,结果造成轮毂端面尖角部位加工不起来。所以,最终仍然将轮毂、轮辋的单边余量设定至7mm和6mm的初期水平。
    辐板和轮辋内径加工余量的确定。由于在淬火和冷却处理过程中辐板会出现变形,因此辐板加工余量的确定,不仅要考虑氧化皮压入、表面裂纹等缺陷的去除,还要格外重视辐板变形的影响。经生产企业长期批量生产经验的积累,辐板单边余量确定为6mm最为适合。轮辋内径也取相同尺寸为宜。
    淬火下沉量的确定。车轮淬火后,轮辋的增大量叫做淬火下沉量。压弯模设计时,应该确保车轮压弯成形以后,毂辋距减小一个淬火下沉量,以确保淬火后的毂辋距符合要求尺寸。淬火下沉量的确定,和火车轮的型号有关。据苏联资料介绍,915车轮淬火下沉量为3—5mm。安徽某钢厂在915车轮模具设计时,淬火下沉量取6mm。
   2.5.车轮锻造过程中的数值模拟分析。
   由于火车车轮的锻造工序繁多,各环节中对轮坯不同部分的数据误差要求较高,且由于涉及到材料金属物理化学性质的变更,因此对锻造过程中的数据控制和数值模拟要求较高,所以对于锻造工作的每个环节而言,建立数值模拟分析是十分必要的。
    目前在数值分析方面,主要采取的是有限元数值分析法,这是一种将连续体根据实际需要,分化为若干个大小有限的单元个体集合,以方便分析连续体力学问题相关数据的方法。这一方法应用在车轮锻造生产过程中,可以精确求解轮坯变形时内部速度场、应力场以及应变场等的变量,从而为车轮锻造各道工序,提供了科学的理论依据。在目前我国火车车轮生产中,基于有限元理论和相关软件支持,已经普遍建立起了火车轮预成形和成形工步数值模拟分析模型、压弯过程数值模拟分析模型、冲孔过程数值模拟分析模型等一系列环节的模拟分析模型。使得工作人员能够及时掌握各阶段数值的变化,以及由此带来的对成品质量的影响,实时调整参数设置,确保车轮最终质量得以实现。
    2.6.当前火车车轮锻造工艺存在的问题。
    随着对火车车轮数量要求的增加和质量要求的提高,我国火车车轮锻造工艺的缺陷也显露出来。目前主要问题在于各工步,尤其是在车轮预成形和压弯工步,对金属变形量的分配以及模具结构和尺寸的设计等诸多问题,有待进一步研究和改进。这些问题的存在不仅使得车轮锻造工序和模具设计的周期更长、对模具和车轮的调试以及模具维修的过程趋于复杂,而且还会导致车轮辐板出现裂纹、车轮成形形状和尺寸满足不了设计要求等一系列质量问题,使得当前的火车车轮生产,从数量到质量都与实际需要存在相当差距。
    火车车轮的锻造,是一个从材料选择、模具设计制造、到前期预成形、成形、再到后期压弯和冲孔的连续性工序系统。由于金属在各工艺阶段会发生相应的物理和化学变化,因此常常会出现诸如填充不充分和偏心等缺陷,导致产品质量不能达到预期要求,严重者产生废品。从加工流程优化、数值模拟分析等方面加以完善,是弥补当前车轮锻造工艺相关环节缺陷,保证车轮最终质量的有效途径。以有限元理论为基础的数值模拟分析模型,是目前实现锻造过程数值模拟分析的可靠途径,是实现对锻造过程中相关数值精确控制的有效手段。笔者认为,我国火车车轮锻造工艺的改进,除了要注重生产设备和新型工艺的开发外,对以有限元理论为依托的计算机软件辅助分析系统的开发运用也应该予以重视,将其纳入工艺改进的重要组成部分。
 

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们