所谓“人—机器系统”,是人机工程学里最重要的课题。当把“人—机”这个对象作为一个整体系统来对待时,构成它的两个子系统的“人”和“机器”是可以综合在一起来研究的。
这种系统不仅存在于火车、汽车、船舶和飞机等运输部门,而且在以人的行动为主体的加工制造业,使用固定机器的企业部门也都包括这类系统。但是,除了人、机两个要素外,劳动环境的因素也是不可缺少的。例如汽车运输,必不可少的要素和子系统还有道路状态和交通指挥装备;
对于飞机的安全飞行来说,来自地面的,主要是关于环境的信息,当然也是必要的条件。从这个含义出发,近来则称为“人—机—环境系统”。
对于我们主要的研究对象——生产车间系统而言,从系统工程学的观点出发,材料和能量、信息一起输入到生产系统中,经过加工处理之后,再作为系统的输出,一般将此作为“生产能力”来处理。当考虑到系统安全时,车间中的人、机器、材料和环境等四个因素构成了生产系统的子系统。因此这就不只是“人—机器系统”,应该认识到这是一个“人—机器—材料—环境系统”。
当这样划分子系统时,必须注意到子系统之间的临界面(接口)问题,这也就是把安全管理上经常采用的连点扩展为接合面,在接合面上妥善进行“子系统之间的信息和能量的交换”。
人—机系统事故模型
人是在特定的空间环境里进行劳动生产的。人在操作岗位上驾驶由外部供给能量的机械,以达到所要求的目的。在正常条件下,各种能量系统(包括人自身的能量)相互制约而保持平衡,且随时间的推移不断调节这种人机关系。一旦违背了人的意愿,出现了失控状态时,就会使这种平衡遭到破坏,从而发生伤亡事故或财产损失。
在包括人在内的空间环境中,只要不存在有害物质的污染,也不发生能量逆流于人体的情况,人就能在这种空间环境中生存和劳动,而且会感到舒适。反之,若作业条件恶化,如高温作业,人的细胞异常活动而易于早期产生疲劳,就有增加发生事故的可能性;又如低温作业时,环境从人体夺走了热量,由于寒冷而束缚了手脚,也易于诱发事故。
一般而言,只要环境不被有害气体污染,人—机系统的事故模式多以人的行动为主体。
这种事故模型中,事故多发生在人、机两个系统相交的部分(斜线区),参看图3-6。
在集体劳动中往往不是单人—机械系统,而是在操作过程中,在同一时间内为完成同一目的,由多人操纵一台机器或一个大型设备,这就是机械—多人系统。
这种多人在机器周围劳动的条件,往往由于相互之间动作不协调,信息交流不充分、不及时,加之视野的局限,特别是易于发生“时间滞差(time lag)”,这就有可能由机械或设备给人以危害,促成事故发生。