安全管理网

电站锅炉事故案例、原因分析及预防

  
评论: 更新日期:2019年02月26日

 (一)事故案例及分析
案例1  1999年7月9日,锦州东港电力有限公司3号锅炉高温省煤器出口联箱至汽包连络直管段,在一次汽系统安全门定砣过程中突然爆裂,酿成5人死亡,3人受伤,直接经济损失120万元。该炉高温省煤器出口联箱至汽包连络管:材质为20#碳钢,规格为φ108×12mm。爆管发生在直管段上,沿轴向开裂,裂口长470mm左右:焊口中间部位在汽水反作用力作用下,形成“v”形弯;爆口方位正对着乙己侧一次汽系统安全门,乙侧部份连络管保温层被吹坏。事故原因是由于金属材料存在原始缺陷扩展所致为设备事故。
(二)锅炉承压件损坏事故的预防
  1、炉外承压部件损坏预防
    锅炉炉外承压部件的损坏发生的事故,数量不是很多。国内外事故统计表明,饱和汽水混合物管道、主蒸汽管道及超临界压力锅炉下辐射区联络管弯头以及汽水联箱封头、手孔堵是锅炉炉外承压部件的薄弱环节。就弯头而言,分析表明,在内压作用下弯头椭圆断面上存在三个高应力区。汽水管道弯头内表的两个高应力区,在锅炉启停、温度变化其局部应力超过材料屈服极限时,表面原有的磁性氧化铁保护膜会损坏,在含氧水的作用下再次氧化造膜,如此反复,形成应力腐蚀疲劳破坏。因其发生在内壁不易发现,且因为有二个薄弱点,一般爆破口较大;对于主汽或再热器管道,外表的高应力区促进高温蠕变的发展,较早发生蠕变孔洞或蠕变裂纹而提前损坏。一些早期苏联和国内生产的平封头联箱及手孔堵,不适当的在管端二次应力区采用未焊透的焊接结构,也容易发生应力腐蚀疲劳裂纹。从而构成了炉外承压部件的薄弱环节。对此类运行年久的锅炉,必须重视炉外承压部件的损坏问题。防止炉外承压部件损坏,应采取如下防范措施:①制作管道弯头要严格控制弯头不圆度,必要时增加壁厚,采用回火工艺以消除冷弯时引起的加工硬化与残余应力;②对于已运行多年的锅炉,汽水管道不圆度超过8%的弯头,在锅炉启停次数超过允许值时,要加强弯头内表面的检查。③主蒸汽、再热汽管道要重点监视弯头的外弧侧外表的微裂纹,对10-14MPa,510℃~540℃参数的φ133×10、φ194×12、φ219×14、φ273×20、φ325×22的12CrlMoV主汽管和导汽管,以及φ426×17CrlMoV再热汽管要重点检查。④要改善停炉保护工作,认真控制化学清洗工作的质量。⑤要加强金属监督,防止错用钢材、焊接缺陷扩展和法兰螺栓断裂。
  2、承压部件磨损预防
锅炉承压部件磨损是一种机械性损坏,一般有四种形式:即飞灰磨损、吹灰器磨损、落渣磨损与煤粒磨损。磨损使管壁减薄,当管壁应力超过材料的屈服极限时,管子爆破。近年来采用小管径、小节距、高烟速以减少省煤器体积及钢材消耗的做法已逐步淘汰。当前飞灰磨损主要发生在烟气走廊地带、管排不均匀处及导流板异常位移处。加强防磨、防爆检查,避免炉墙漏风以及正确使用与维护防磨装置是防止飞灰磨损的主要措施。吹灰介质(空气或蒸汽)带水,吹灰器卡在一个位置上不动以及吹灰器定位不当是吹灰磨损管壁变薄的主要原因。吹灰操作程控,吹灰器位置的正确信号显示及采用其他吹灰方式清洁受热面是解决吹灰器磨损的途径。锅炉冷灰斗斜面被炉瞠上部下落的灰渣冲刷使冷灰斗边排管壁爆管的事故还不多见,一旦发现防范措施是在此部份管壁上堆焊防磨层或加焊防磨棒。煤粒磨损主要发生在喷燃器出口处。主要原因是喷口位置不正确,防磨保护层磨耗、脱落或管排异常变形。
    3、管壁过热损坏预防
    管壁在高温烟气中受热,如果得不到可靠的冷却,其运行温度超过设计值或超过运行时限发生损坏,称为过热。短期过热造成的损坏是因高温使管材强度下降,例如管子内部堵塞,缺水、水循环破坏或膜态沸腾等,大部分短期过热损坏处会呈现明显的延伸和收缩变形,在破裂处呈现刀刃状边缘;只有当过热温度超过相变温度AC3,钢材的铁素体转变为奥氏体时,管壁减薄才不明显。高温蠕变或称中、长期过热是因为钢材长期工作在蠕变温度以上,金相组织发生变化;包括:珠光体球化,碳钢和钼钢的石墨化,碳化物聚集,奥氏体钢发生。相沉淀等,从而降低了金属的晶间强度而损坏。这种损坏管壁没有明显减薄,厚唇状破口是高温蠕变的特性。
    短期过热损坏有不同的起因,防范措施亦因此而不同。一般的要求是,应建立防止作业工具、切削颗粒以及焊渣进入管段的检修工艺,建立防止汽包低水位及过量使用减温水导致过热器管内出现水塞的操作规程。高温蠕变的原因差异更大,一般情况下,首先要弄清是汽温长期超温、个别蛇形管超温、还是炉内管壁超温;弄清是因为热力偏差、水力偏差还是结构偏差引起的蛇形管超温。个别管的过热采用高一级材料替代往往可以取得良好的效果。
  4、受热面损坏预防
    (1)受热面烧损及预防
    锅炉受热面是将烟气中的热量传递给汽、水、空气的界面,在没有汽、水、空气这些冷却介质时,受热面的温度便会很快接近或达到烟温。煤、油正常燃烧可能达到的温度为1500℃~1600℃,高于钢铁的熔点,由此引起的钢材熔融、氧化称为烧损。发生在发电厂中受热面烧损主要是空气预热器及省煤器受热面烧损,通常称为锅炉尾部烟道再燃烧,或称二次燃烧,当温度与氧量条件合适,便自燃起火。紧急停炉后空气预热器停转,从关不严的烟、风挡板漏入空气等,常常是促进油垢着火的原因。
    锅炉尾部烟道再燃烧的主要原因是炉膛燃烧恶化,特别是启动和带低负荷期间燃烧不完全,可燃物带至锅炉尾部并在那儿聚集。防范措施包括防止可燃物沉积以及着火后的扑救两部分。通常包括,①油枪投用前应逐个试点火,点火成功后再调试自动点火,避免盲目试点火;②点火不着,lO~30s内停枪,最好退出油枪倒出管内存油,以免残油入炉;③用好油枪根部风,保持油枪冷却,维持油枪良好的雾化功能以控制低负荷阶段油雾的完全燃烧;④锅炉点火前,空气预热器蒸汽吹灰、水冲洗(或消防水)装置必须投用;⑤发现排烟温度异常升高等再燃烧现象时,要及时正确处理确保省煤器与钢结构的冷却,防止事故扩大;⑥长期低负荷燃油要考虑热碱水冲洗方案。
    (2)受热面腐蚀及预防
    锅炉受热面腐蚀减薄损坏,因涉及范围较大,一旦暴露,常导致重复爆漏事故,而且修复工作量大,因此预防及保护设备不受腐蚀是提高锅炉可用率必须解决的基本任务之一。汽、水侧腐蚀按其机理分,包括苛性腐蚀、氢损害、氧腐蚀、垢下腐蚀及应力腐蚀。烟气侧腐蚀包括水冷壁向火侧腐蚀、高温煤灰(油灰)腐蚀和低温腐蚀。国内电厂曾因垢下腐蚀,水冷壁氢损坏及向火侧腐蚀,导致大面积换管。国外一些超临界机组曾发生因过热器管内壁氧化皮脱落,被蒸汽带入汽机而引起喷嘴、叶片的固体硬粒侵蚀。
  1)水冷壁管垢下腐蚀
  水冷壁管垢下腐蚀是以紧贴管壁的垢下管壁为阳极,外围表面为阴极所构成的局部电池作用引起的电化学损害,严重时可导致鼓包或腐蚀穿孔。当前防止垢下腐蚀最主要的防范措施是解决凝汽器泄漏后给水硬度超标问题;要加强给水含铁量的检测与控制;对已结垢的水冷壁进行化学清洗。总之,要加强化学监督工作。对于超临界直流炉由于给水水质纯度较高组必须采用挥发性处理。所以美国通常采用氨一联氨方式,而德国和前苏联推荐采用氨一氧处理和中性水加氧的方式。前苏联试验肯定了中性水加氧的方式,认为可以大大降低炉管垢量。我国推荐采用加氧处理方式。当然,采用何种方式还与汽水系统中管道、阀门所用的材料有关。
  2)水冷壁管氢损坏
  水冷壁管氢损坏原因是受热面内壁结垢和炉水长期处于低pH值状态。当进入凝结水系统的酸性盐类在水冷壁管垢下浓缩,氢原子进入管壁金属组织中与碳化铁作用生成甲烷,使钢材晶间强度下降。发生氢损害时,管壁几乎没有明显减薄,有时发生“开窗式”破裂,一般的超声探伤技术难以发现发生氢损害使金属变脆的位置。
  在用电站锅炉一旦发生管壁很少减薄的脆性破坏,宜割管检查,通过多相或宏观侵蚀试验,判断是否是氢损坏。若经确认是氢脆损坏,则其对策是化学清洗并更换已发生材料强度下降或管壁减薄的管子。由于氢损坏是属于垢下发生的二次腐蚀,所以防范措施应补充:①严格控制锅水质量,不使管内壁腐蚀结垢;②发现腐蚀时要采取措施清洗管壁防止结垢;③防止凝汽器管泄漏,特别要控制锅炉水中酸性盐类,如Mgcl2等盐类存在;④监测饱和蒸汽中含氢量。
  3)水冷壁向火侧腐蚀
  水冷壁向火侧腐蚀是指水冷壁外壁在还原性气氛中,挥发性硫、氯化物及熔融灰渣作用下,使管壁减薄引起的故障。水冷壁向火侧腐蚀不可能发生在燃烧区域的氧化气氛中。一氧化碳,包括未燃烧的煤粒冲刷管壁,在硫酸盐和氨氯化物的作用下加速腐蚀,导致管壁减薄,当其腐蚀速度超过25 u m/103h时,表示已有明显腐蚀。此外低熔点的钠、磷的焦硫酸盐甩落在水冷壁管外表,能熔掉管外表的氢化铁保护层,也使金属受到腐蚀。超临界压力锅炉因其布置特点及壁温相对较高,容易发生圆周方向的沟槽或裂纹。由于水冷壁向火侧腐蚀涉及燃烧器区域附近一批管子的安全问题,严重时1~2万小时就要更换一批水冷壁管。
  预防l水冷壁向火侧腐蚀的措施是:①控制喷燃器喷射角度与烟气氧量,避免未燃煤粉与还原生气体冲刷水冷壁;②采用渗铝管或火焰喷涂的方法提高水冷壁管的抗腐蚀能力;③在降低烟气含氧量采用低氧燃烧或为降低NOX而采用二次燃烧法时,要注意可能出现的向火侧腐蚀。
    4)低温腐蚀
    低温腐蚀是烟气中的硫酸、亚硫酸在低于露点的受热面上凝结,使受热面腐蚀的一种瑚象。煤、油含硫量高、壁面温度低是产生低温腐蚀的主要原因,大容量电站锅炉低温腐蚀主要发生在空气预热器。一般情况下,空气预热器低温腐蚀并不构成事故,但影响机组的长期安全可靠运行,增加检修工作量,并降低锅炉经济性。个别情况下,由于不均匀的堵灰、腐蚀,使烟、风压随回转式空气预热器的旋转而周期性变化,当影响燃烧稳定及自动控制质量时,可能成为锅炉强迫停用的因素之一。采用低硫煤、炉内脱硫等措施有利于防止低温腐蚀;采用耐腐蚀材料、改变传热元件型线,采用玻璃管预热器、热管式空气预热器,加装暖风器等都是防止低温腐蚀的措施。
    (3)受热面疲劳损坏预防
    炉管受到周期应力或应变的作用,导致疲劳裂纹的发生、发展而缩短其使用寿命,称为疲劳损坏。分为:振动疲劳、热疲劳、腐蚀疲劳及低周热疲劳。损坏时间决定于应力交变辐度,交变次数、应力集中程度与腐蚀介质种类。
    1)振动疲劳损坏
    锅炉承压部件由于振动引起疲劳损伤事故为数不多。机械疲劳破坏,其断口往往有明显的疲劳纹,裂纹由外表向内发展,断口表面呈细瓷状。锅炉喷水减温器喷头、喷管及温度表库通常处于一端固定,一端自由的悬壁状态,当汽流激振频率与自身固有频率相同时发生共振,就有可能导致振动破坏。锅炉转向室吊挂管在烟流“卡门旋涡’’作用下也可能发生振动疲劳损坏。在锅炉设计时加以考虑或事后加装隔板或连杆改变自振频率,是防止此类损坏的根本措施。检修中加强检查及时发现疲劳裂纹有利于早期处理。管件焊接避免咬边、实施圆滑过渡降低应力集中也是防止振动疲劳损坏的有力措施。
  2)热疲劳损坏
  锅炉受压部件表面急剧冷却、加热,经受热冲击,当应力辐度及交变次数足够时,便出现网状、放射状或鳄鱼皮状裂纹。锅炉汽包省煤器再循环管孔附近的裂纹、安全阀管座附近、疏水管管座等处,往往容易出现两种温度不同的汽水介质,从而构成壁面温度交变的条件,是锅炉承压部件发生热疲劳损坏的区域。据西德TUV报道,中间再热机组的快速减温减压装置所用高压旁路阀体内壁在阀门开启之际,温度变化速度最大可达4℃/s,在1~2rain内个别的温度可从240℃升到450℃,加以不可避免的存在铸造缺陷,从面使相当多的一部分阀体出现热疲劳裂纹。防止热疲劳裂纹的措施与出现温度交变的原因有关。对于省煤器再循环管孔的裂纹,我国与前苏联锅炉监察规程已规定,再循环管、给水管、减温水管、加热管、加药管等管座要采用带保护套管的管接头,以免冷热交变引起汽包、联箱壁的热疲劳。对于皎长安全阀入口管段内冷凝水引起的温度交变,则采用接入小管,使该管段不流动的死汽流动的措施。禁止或避免疏水反向流入高温主汽及再热汽联箱,避免减温水直接喷溅到联箱壁等。这些运行或设备改进措施都有利用预防热疲劳损坏。
  3)低周疲劳损坏
  锅炉承压部件低疲劳损坏也是一种热疲劳,一般指承压部件因热膨胀受阻部热应力随隅炉启停或参数变化而引起的疲劳损坏。因其应力变化辐度大,局部应力有可能达到屈服极限,因而在数百次或数千次交变之后便可能发生低周疲劳破坏。当然对锅炉汽包,厚壁联箱内压应力随锅炉启停也发生交变,也可能出现低周疲劳损坏,但此类事故发生频率不高。原则上,锅炉元部件只要存在温差,或各相连元部件之间的膨胀死点不同,或相连部件的膨胀系数不同都将出现热应力。问题是热应力的大小,能否导致局部屈服。例如锅炉受热管的穿墙部分,由于组成墙壁的管排(如顶棚管)与蛇形管之间的温差,冷态与运行状态下联箱与管排的相对位置有差异,当蛇形管挠度不够时,联箱管座将因这种热应力而发生低周疲劳损坏。一台wGz400/100炉顶棚管与前悬吊管上联箱之间的高差只有500mm,计算表明,锅炉启停时,管座的根部应力达到300MPa,因而在一段时间后发生损坏,将联箱分段,并将中间段箱抬高增加挠度后,就解决了问题。风箱、燃烧器、人孔门框架与水冷壁连接处角焊缝一般都存在温差应力,管子管卡、管道支吊架部位虽然无较大的热应力,但管子、管道的热膨胀变形也影响这些管件的受力状况。事实上,一些频繁启停的锅炉已发生过这些部件的损坏事件。
    为减少电站锅炉事故引起的直接与间接损失,减少事故停用带来的紧张的抢修工作,电站锅炉的安全监察和检验检测人员,必须认真贯彻“安全第一、预防为主”的方针,实现“杜绝特大事故、遏制重大事故、减少一般事故”的工作目标,落实各项措施,提高设备的可用率,防止电站锅炉事故的发生。

 

 

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们